sexta-feira, 28 de agosto de 2015
Pra que servem as coisas que nos ensinam na matemática?
quarta-feira, 18 de março de 2015
Nerd apaixonado manda coração para sua musa
Ou seja, se y=3x+5, a gente pega certo valor de x, multiplica por 3, soma 5, e tem o valor de y correspondente a ele.
sexta-feira, 27 de fevereiro de 2015
Percepção visual e ilusões de ótica (ou: branco gelo)
No início do século XX, alguns psicólogos passaram a estudar a percepção em seu sentido mais geral (não se limitando à percepção visual), construindo um tema de pesquisa chamado Teoria da Gestalt (pronuncie guestalt, g de gato). Eles estudavam a questão da figura e fundo, o completamento e outros fenômenos perceptivos.
quinta-feira, 29 de janeiro de 2015
Calculadora Padrão do Android
Este é o painel básico da calculadora. Preto, branco e
Não, ainda não baixei nenhuma calculadora avançada. Pura preguiça. Quando me der vontade, vou lá no Google Play e
p.s.: Pra ser completamente honesto, foi minha esposa que comprou. Os dois. E me deu um de presente. Mas a decisão de qual modelo comprar foi minha.
É verdade que usamos apenas 10% do cérebro?
Começo com uma afirmação que, vez por outra, quando digo que
E eu me pergunto de onde veio esse número redondo... Afinal, se isso é verdade (eu ainda não estou dizendo que é verdade nem que não é, apenas comecei a conversa!), então por que só 10%, em vez de 15% ou 50% ou 12,34567890%?
E mais: de onde veio essa estória? Isto é verdadeiro, ou é mito? Ou, se parte é verdade e parte é mito, qual é qual?
Vou confessar: eu já pensei que essa afirmação fosse verdade #prontoFalei. Só que, quando eu comecei meu curso de psicologia, uma das primeiras afirmações que foram demonstradas como mito foi esta. Ou seja, a afirmação de que só usamos 10% do cérebro é mito #prontoFaleiDeNovo.
Mas de onde vem este mito? Vem de uma crença popular, difundida em e por muitos filmes e livros. A crença popular é que os seres humanos têm uma reserva de energias ou de poderes psíquicos, e só teríamos acesso a essas energias e esses poderes por meio de técnicas esotéricas, somente acessíveis a alguns iniciados.
Mas o que aconteceu realmente foi um mal-entendido ou uma má compreensão das descobertas de neurologistas e neurocientistas no fim do século XIX e início do século XX (Sigmund Freud era estudante de neurologia naquele tempo, e teria seguido esse caminho se não tivesse conhecido o fenômeno histérico e o Dr. Charcot... mas esta é outra história). Segundo essas descobertas, o fato é que a quantidade de neurônios no cérebro é muito inferior à quantidade de células cerebrais (por volta de 10 porcento das células cerebrais são neurônios, os demais são outros tipos de células). No fim do século XIX e início do século XX, o dr. Freud começou a estudar de forma mais aprofundada os fenômenos inconscientes, chamando-os de Inconsciente (com I maiúsculo). Junte essas duas informações, mais uma pitada de imaginação fértil e temos a receita do mito.
Mas como podemos refutar esse mito?
Uma das formas é com tecnologia. Várias experiências foram feitas com pessoas passando por exames cerebrais de imagem (tomografia computadorizada, ressonância magnética etc.), e em todas elas foi demonstrado que a pessoa dona do cérebro examinado estava utilizando completamente a capacidade cerebral, umas áreas com maior, outras com menor intensidade, mas não houve nenhuma área "desligada".
Além disso, o cérebro humano já foi mapeado (contribuições dos doutores Penfield, Brodmann, Broca e companhia limitada), e ele é todo compartimentado, com áreas cerebrais responsáveis por tal e qual função. Existem áreas que lidam com a respiração, com o movimento de cada braço, de cada perna, com os olhos, com as sensações em cada local do corpo, com a memória, com a linguagem, o pensamento, os hormônios etc. (
Concluindo, usamos sim, mais de 10 por cento do cérebro. Usamos, na verdade, CEM POR CENTO do nosso cérebro, mesmo quando esquecemos a chave de casa em casa ou não nos lembramos da prova no dia seguinte.
Referências:
terça-feira, 13 de janeiro de 2015
Progressão Aritmética e Dinheiro
Aposto que você, assim que leu o título do texto, já ficou, no mínimo, curioso, seja homem, seja mulher. Aparece a pergunta na cabeça de quem lê: “No que é que matemática vai me ajudar a ganhar dinheiro?”
Pra começar, minha intenção com este texto NÃO É ensinar você a ganhar dinheiro. Isto cabe a você. O que me cabe é mostrar uma forma de GUARDAR dinheiro para os períodos difíceis que porventura virão. (Com esta explicação, metade dos curiosos desiste de continuar lendo.)
E neste sentido, há uma ferramenta, vinda da matemática do ensino médio, que pode ser útil: Progressão Aritmética.
“Mas peraí”, alguém começa a objetar, “eu me lembro de que existem dois tipos de progressão, a aritmética e a geométrica. Você vai falar só da aritmética? Não vai falar da geométrica, não?” Bem, até poderia falar da progressão geométrica, mas levando em conta que a gente está procurando uma forma de guardar dinheiro que seja relativamente simples e que não pese muito no bolso do cidadão nem da cidadã, acredito que a progressão aritmética se adapta melhor a esse critério do que a própria progressão geométrica. Acompanhe o texto e você vai entender.
Pra começar, o que é uma progressão aritmética? É uma sequência de números na qual cada termo, a partir do segundo, é formado pela soma do termo anterior com uma constante, a qual vamos chamar de razão e apelidar de r. É assim: a1 (começa sempre com a1), a2 = a1 + r, a3 = a2 + r (a3 = a1+2r) e por aí vai...
Há uma fórmula para isso, a fórmula do termo geral da PA (o apelido que vamos dar para a progressão aritmética):
an = a1 + (n-1)*r
E metade dos interessados em ler este texto desistem de lê-lo somente porque apareceu esta fórmula. Enfim, vamos continuar com os bravos persistentes.
O que quer dizer esta fórmula? Quer dizer que, se a pessoa tiver conhecimento do primeiro termo, de quantos termos foram anteriores e da razão, pode saber qual é o termo em questão neste momento. Sigam-me os bons!
Existe uma forma (outra fórmula) de termos noção da soma dessa PA, a soma dos termos:
Sn = (a1 + an)*n/2
Tem até uma estorinha curiosa a respeito da criação desta fórmula, atribuída a um matemático chamado Gauss.
Muito bem, e o que tem a ver essas duas fórmulas com guardar dinheiro?
Vamos supor que Celso (um personagem integrante do mundo mágico de Jorge) definiu como meta ou promessa de início de ano economizar dinheiro. Muito bem, o ano virou e ele não se esqueceu dessa promessa, ao contrário de muitos brasileiros.
Mas ele queria uma forma simples de economizar dinheiro, e que não pesasse tanto no bolso. Sabe como é, grana curta, muitas contas pra pagar, e um pouco de conforto não faz mal a ninguém.
Ele então se lembrou das aulas de matemática do ensino médio (ele era um dos poucos que prestava atenção às aulas de matemática do EM) e, em especial, das progressões, aritmética e geométrica.
Num primeiro momento, ele se interessou pela progressão geométrica. Afinal de contas, a lei de formação da PG é algo assim:
an = a1 * q ** (n-1)
Aqui é q elevado a n-1, uma potência. Quando você vir algo do tipo a ** b, é uma potência, é a elevado a b.
E a soma dos primeiros termos da PG é:
Sn = [a1 * (1 – q **n)]/(1 – q)
Celso começou a ficar empolgado. Se ele seguisse a PG, ele teria muito dinheiro guardado no final do período que ele estivesse economizando!
Só tem um problema. Celso teria que sempre dobrar (no mínimo) a quantia economizada a cada vez. Ou seja, ele começaria com 1, depois com 2, depois 4, 8, 16, 32, 64, 128, 256... Rapidamente ficaria impraticável economizar assim.
Foi então que ele se voltou para a PA, a progressão aritmética. Ele montou uma tabelinha:
Termo
|
Valor
guardado
|
Soma
|
1
|
1
|
1
|
2
|
2
|
3
|
3
|
3
|
6
|
4
|
4
|
10
|
5
|
5
|
15
|
6
|
6
|
21
|
7
|
7
|
28
|
8
|
8
|
36
|
9
|
9
|
45
|
E notou que o início começa pequeno, mas depois, com persistência e disciplina, os frutos vêm em abundância (discurso de pregador de prosperidade).
Ele ficou curioso. Se ele seguisse esse esquema, guardando 1 real na primeira semana do ano e, a cada semana, aumentasse o valor guardado em apenas 1 real, com quanto ele ficaria no fim do ano (lembrando que o ano tem 52 semanas)?
Dá-lhe soma da PA:
Sn = (a1 + an) * n/2
a1 = 1
an = a52 = 52
n = 52
Sn = (1 + 52) * 52/2
Sn = 53 * 26
Sn = 1378
Foi o que ele fez: ele assumiu este desafio e, toda terça-feira (porque segunda é o dia das dietas não cumpridas), ele depositava em um cofrinho sempre 1 real a mais do que ele havia depositado na semana anterior. Chegou a um ponto em que o cofrinho não cabia mais... e comprou outro. E foi juntando dinheiro até o último fim de semana de dezembro. Quando o ano virou, ele estava muito mais sorridente, de certa forma estava até mais feliz do que os amigos dele, pois estava com as contas em dia e conseguiu economizar dinheiro sem sacrificar-se tanto.
Acredito que a estória de Celso deve ter inspirado você ou, no mínimo, deixado você curioso. Agora cabe a você decidir o que fazer em seguida: poupar ou não, e caso queira poupar, acabei de mostrar uma ideia simples de como fazer isso. Com paciência, disciplina e persistência, você pode ir longe.
sábado, 10 de janeiro de 2015
Retorno
Deixa eu colocar você a par do que aconteceu comigo:
* Terminei o curso de psicologia. Fiz meu estágio em Psicologia Hospitalar no Hospital das Clínicas da UFPE (e agradeço muito ao pessoal de lá pela paciência que tiveram comigo), apresentei meu relatório de estágio e me formei em 2014.
* Não voltei mais a mexer com corretagem de imóveis.
* Continuo estudando para concursos. Não apenas dentro da minha área, fora dela também.
* CASEI! Casei em novembro de 2013 com uma mulher maravilhosa!
* Continuo servindo como diácono na igreja em que faço parte.
Mudando de assunto:
Uma coisa que prestei atenção (depois de minha mãe, depois minha esposa comentarem MUITO a respeito) é a dificuldade que muitos estudantes têm com matemática. Até que a ficha caiu. (
Quanto a este blog, recebi com muita surpresa os comentários que recebi, no post de matemática financeira. A ponto de tomar uma decisão: utilizar este espaço para postar dicas de matemática e física.
Não garanto uma periodicidade fixa, coisa do tipo um post diário ou semanal, coisa assim. Mas garanto que, assim que eu encontrar um assunto interessante, curioso ou útil, vou postar aqui algo a respeito. E por favor, dispense-me de fazer os seus exercícios escolares, já tenho problemas bastantes ;D
A mesma coisa vale para assuntos ligados à psicologia. Ou seja, são dois grandes temas (Ciências Exatas e Psicologia) para comentar.
Então, até a próxima!